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ABSTRACT – Computer simulations have been widely used for occupant and pedestrian injury prediction as a result of vehicle 
impacts; however, their validity is often limited by the testing data being validated against. This article describes a machine learning 
method to improve prediction accuracy by calibrating the simulated pedestrian injury risks with field crash injury data. The concept 
is to construct a surrogate model of the kinematic-based simulation model to generate fast predictions in the full input space and 
then search for the optimal simulation parameters and model discrepancy that match the predicted injury risks from the surrogate 
model with the injury outcomes in the field data. Consequently, the calibrated surrogate model integrates the field data with the 
kinematic-based simulation model and field data, returning more accurate predictions throughout the input space. The effectiveness 
of the proposed method is demonstrated by a case study where the MADYMO simulations were calibrated by the pedestrian injury 
data from Pedestrian Crash Data Study (PCDS).  

__________________________________ 

INTRODUCTION 

Pedestrian injuries are a major public-health problem 
worldwide. In the U.S., the proportion of pedestrian 
injuries in motor-vehicle-crash-induced injuries have 
been increasing in recent years and will likely 
continue to increase in the near future [1]. To better 
understand the pedestrian injury distribution and 
mechanism, MADYMO simulations [2, 3] have been 
developed to predict injury risks under varying crash 
scenarios. However, the simulation model is 
established on rigid-body-based scalable pedestrian 
models, which may not accurately predict crash 
injury risks in real crashes. Finite element (FE) 
human body models may be more accurate than 
MADYMO models, but in addition to numerical 
limitation in FE models, there are other limitations 
associated with the experimental data used to develop 
and validate the models. As a result, modeling results 
are always associated with certain levels of errors. 

Recently, machine learning methods have been 
investigated to improve simulation models’ accuracy 
using field data, which are often referred to as 
computer model calibration techniques [4]. The basic 
concept is to provide statistical estimates of unknown 
simulation parameters and model discrepancies that 
optimally match simulated and actual responses 
under the same input. For example, Kennedy and 
O’Hagan (2001) [4] utilized a full Bayesian 
framework to simultaneously estimate unknown 
simulation parameters and model discrepancies for 
scalar outputs. Sung et al. (2020) [5] proposed a 

statistical framework for model calibration with 
binary responses. However, calibration of crash 
simulations has been seldom explored. 

In this study, we first build a fast surrogate model of 
the pedestrian crash simulations based on dynamics 
and kinematics associated with pedestrian impacts, 
then calibrate the surrogate model with field crash data 
to improve its accuracy. Specifically, the pedestrian 
injury data from the Pedestrian Crash Data Study 
(PCDS) is selected for validating and improving the 
model. The PCDS dataset involves 521 pedestrian 
crashes from 1994 to 1998. Investigation for each 
crash was conducted within 24 hours of the crash. 
Each case includes detailed crash scenarios and injury 
descriptions. Data analytics have been conducted on 
the PCDS dataset in the past years [7]. However, to the 
best of our knowledge, there is no systematic machine 
learning model trained to calibrate crash simulations 
using the PCDS dataset. An overview of the proposed 
method is shown in Figure 1. 

 

METHODS 

Pedestrian Impact Simulation 

MADYMO is used for all pedestrian impact 
simulations. The methods for simulation setup are 
similar to those reported in our previous study [8]. In 

 
Wenbo Sun, 2901 Baxter Rd, Ann Arbor, MI 48109. 

sunwbgt@umich.edu 



 Author surname et al. / Stapp Car Crash Conference Short Communication 2 

 

this study, three vehicles are selected, including a 
sedan, an SUV, and a pickup truck. The vehicle 
model geometries are transferred from FE vehicle 
models to ensure accuracy. Contact stiffness values 
for windshield, hood, hood-leading edge, and bumper 
are defined separately based on MADYMO template 
models. The MADYMO scaler was used to generate 
pedestrian models with different combinations of 
height and weight for men and women.  

ModeFrontier (ESTECO, Italy) is used to 
automatically integrate MADYMO vehicle and 
pedestrian models to generate large-scale simulations. 
The simulation matrix is determined using the 
Maximum Projection design of experiments [9], which 
has shown better results than the conventional uniform 
Latin Hypercube sampling. To balance the simulation 
time and model accuracy, a total of 9,000 simulation 
runs are generated to explore the injury measures and 
risks under different crash conditions. The input 
variables include pedestrian subject variables (gender, 
age, stature, and BMI), crash scenario (impact 
location, impact orientation, pedestrian speed, vehicle 
speed and vehicle type) and unknown simulation 
parameters (vehicle stiffness and impact location 
scale). The vehicle stiffness and impact location scale 
are considered unknown simulation parameters to be 
calibrated because they have significant impact on the 
injury measures while being unavailable in the field 
data. Among the injury measures, we focus on injuries 
on head, chest, tibia, and femur. The pelvis injury is 
not included in the data analytic step due to its high 
dependency on the initial impact location of the crash, 
which is very sensitive to a small perturbation on the 
crash scenario and thus becomes difficult to predict. 

PCDS Dataset Processing 

The PCDS dataset is pre-processed to match the 
simulation dataset. While the pedestrian subject 
variables, vehicle speed, and vehicle type in the PCDS 
dataset share the same data format a.s in the simulation 
dataset, part of the crash scenario information, 
including impact location, impact orientation, and 
pedestrian speed, are described in text and require to 
be converted to quantitative values. In particular, we 
use the general area of damage (PGADEV1) and 
injury source (PINJSOU) to find the impact location 
and assign negative, zero and positive location values 
to the crashes on the right, center and left of the 
vehicle, respectively. We set the pedestrian speed as 0 
km/h, 5 km/h and 8 km/h for standing, walking, and 
running pedestrians, respectively. The impact 
orientation is assumed to be -135, -90 and -45 degrees 
when the pedestrian is facing away from vehicle, side 
to vehicle, and facing vehicle, respectively. We further 

remove cases with missing variables and obtain a 
dataset of 392 samples. 

Model Calibration 

The model calibration involves two steps – surrogate 
model training and calibration parameter estimation. 
The first step trains a statistical model that maps 
simulation inputs to outputs without running the 
actual simulation model. Here we employ the 
Gaussian process model [10] to construct the 
surrogate model, where the powered exponential 
covariance function is chosen to measure the sample 
correlations and the Gaussian process parameters are 
estimated through the maximum likelihood 
estimation. More details can be found in [10]. 

Next, we formulate the model calibration following 
the framework in [3]. Let 𝑥𝑥𝑖𝑖 denote the vector of 
pedestrian subject variables and crash scenario of 𝑖𝑖-
th case in the PCDS dataset. Let 𝜃𝜃𝑖𝑖 denote the 
unknown simulation parameter. 𝜂𝜂𝑗𝑗(𝑥𝑥𝑖𝑖 ,𝜃𝜃𝑖𝑖) represents 
the 𝑗𝑗-th dimension of the simulated injury measures. 
Let 𝑦𝑦𝑖𝑖,𝑗𝑗 denote the observed injury indicator on the 
𝑗𝑗-th body region in the 𝑖𝑖-th case where 𝑦𝑦𝑖𝑖 ,𝑗𝑗  = 1 
represents the injury cases (AIS≥ 3 on head and 
chest or AIS≥ 2 on lower extremity). The injury 
evaluation functions 𝐽𝐽𝑗𝑗 in [2] are used to link the 
injury measures to the injury risks as: 

𝑃𝑃�𝑦𝑦𝑖𝑖 ,𝑗𝑗 = 1� = 𝐽𝐽𝑗𝑗  �𝜂𝜂𝑗𝑗(𝑥𝑥𝑖𝑖 ,𝜃𝜃𝑖𝑖) + 𝛿𝛿𝑗𝑗�, 

where 𝛿𝛿𝑗𝑗 is the model discrepancy on the 𝑗𝑗-th body 
region. This formulation implies the assumption that 
the model discrepancy is constant for a fixed body 
region throughout all the cases. 

In the calibration step, simulation parameters are 
identified via solving the optimization problem under 
the assumption that no model discrepancy exists, 
which is formulated as: 

𝜃𝜃𝚤𝚤� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝜃𝜃�𝑦𝑦𝑖𝑖 ,𝑗𝑗 log�𝐽𝐽𝑗𝑗(𝜂𝜂𝑗𝑗(𝑥𝑥𝑖𝑖 ,𝜃𝜃))� + (1
𝑗𝑗
− 𝑦𝑦𝑖𝑖 ,𝑗𝑗)log (1 − 𝐽𝐽𝑗𝑗(𝜂𝜂𝑗𝑗(𝑥𝑥𝑖𝑖 ,𝜃𝜃))) , 

where the rationale behind the formulation is to 
assign high injury risks to injury cases and assign low 
injury risks to non-injury cases. Next the constant 
model discrepancy is estimated based on the 
estimated simulation parameters, which is to compute 

𝛿𝛿𝚥𝚥� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝛿𝛿  ∑ 𝑦𝑦𝑖𝑖,𝑗𝑗 log �𝐽𝐽𝑗𝑗�𝜂𝜂𝑗𝑗�𝑥𝑥𝑖𝑖 ,𝜃𝜃𝚤𝚤�� + 𝛿𝛿�� +𝑖𝑖

          (1 − 𝑦𝑦𝑖𝑖,𝑗𝑗)log (1 − 𝐽𝐽𝑗𝑗�𝜂𝜂𝑗𝑗�𝑥𝑥𝑖𝑖 ,𝜃𝜃𝚤𝚤�� + 𝛿𝛿�)  .  
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With the simulation parameters and model 
discrepancy calibrated, for case 𝑥𝑥𝑖𝑖, the simulation 
injury measures are updated as 𝜂𝜂𝑗𝑗�𝑥𝑥𝑖𝑖 ,𝜃𝜃𝚤𝚤�� + 𝛿𝛿𝚥𝚥� , which 
is expected to reflect the crash injury more accurately 
in the actual crash case. 

RESULTS 

The accuracy of the surrogate model is evaluated 
based on the mean squared errors in a 5-fold cross-
validation setup. Simulation runs are divided into five 
folds, each of which is used to generate predictions 
from the model trained at the left-out fold. The scatter 
plot in Figure 2 between the predicted and true values 
among all the test samples is provided to illustrate the 
accuracy of the surrogate model. The subplot in panels 
(a) and (b) depicts the prediction performance of the 
logarithm of the HIC and sternum acceleration, 
respectively. Most of the points are close to the line 
y=x, indicating that the predicted values are close to 
the true values in the test dataset. It is worth noting that 
the low sample density at the low HIC region leads to 
low accuracy due to the nature of Gaussian process 
modeling. The prediction accuracy can be quantified 
by the ratios between the explained variance and the 
total variance, which are 92.4% and 76.4%, 
respectively. 

 

The proposed model calibration method is performed 
on the generated simulation dataset and the pre-
processed PCDS dataset. Figure 3 shows the 
comparison of predicted injury risks before ((a) and 
(c)) and after calibration ((b) and (d)), where the 
subplots (a) and (b) compare the head injury risks 
while the subplots (c) and (d) compare the chest injury 
risks. The injury (left) and non-injury cases (right) are 
separated by the vertical dashed lines. Significant 
reductions of injury risks are observed for non-injury 
cases after the proposed calibration method for both 
body regions. We further compare false alarm rates 
(injury risks greater or equal than 0.5 for non-injury 
cases) misdetection rates (injury risks less than 0.5 for 
injury cases) before and after calibration in Table 1. 
We observe 6.89% and 8.67% reductions in the 
misdetection rates of head and chest injuries, 
respectively, with 5.57% and 2.85% increments in the 
false alarm rates. The misdetection rate of femur injury 
increases by 5.6% with an improvement of false alarm 
rate by 1.27%. Figure 3 indicates that the calibrated 

model tends to predict injury risks around the hard 
boundary 0.5 for these misclassified samples when 
compared to the uncalibrated model. 

Body 
regions 

False alarm rates Misdetection rates 

Before After Before After 

Head 6.63% 12.2% 7.91% 1.02% 

Chest 4.85% 7.14% 12.5% 3.83% 

Tibia 14.5% 16.6% 13.8% 11.2% 

Femur 3.57% 2.30% 12.0% 17.6% 

 

 

DISCUSSION 

The model is calibrated based on individual simulation 
parameters and a constant model discrepancy term, 
which may not fully represent the gap between the 
simulated and actual responses. More complicated 
discrepancy terms, for instance, Gaussian-process-
based nonlinear discrepancy terms, will be utilized in 
the future calibration work. 

CONCLUSION 

The study presents a quantitative method to improve 
the surrogate model of pedestrian injury simulations 
based on the field data. The case study on the PCDS 
data shows a high accuracy of the surrogate model and 
significant improvements after calibrating the 
simulation parameters and estimating the model 
discrepancy. 
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